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Table 3. Refinement of a thin crystal 
Dimensions in mm. Dimensions (1) are from a single-cycle least-squares refinement varying all allowed parameters. Dimensions 

(2) are from a single-cycle least-squares refinement omitting (hkO) reflexions from data set B'. 

Initial dimensions 
Data set A'(b rotation axis) Dimensions (1) Dimensions (2) Ideal Dimensions 
(100) 0.096000 0.089645 0.096000 0.100000 
(010) 0.140000 0.192937 0.140000 0-140000 
(001) 0.004000 0.001590 0.001588 0.002000 

Data set B'(c rotation axis) 
(100) 0.100000 0.098257 0.100000 0.100000 
(010) 0.144000 0-140046 0.144000 0.140000 
(001) 0.004000 0.001600 0.001590 0.002000 

obtained by evaluating the random error implicit  in 
the absorption correction. 

Extension of  the methods here, differentiating the 
absorpt ion correction for the addit ional  parameters in- 
volved for the case of  a crystal in the presence of  its 
mother  l iquor in a capillary (Wells, 1960) appears 
quite feasible. 

It should be noted that using a four-circle geometry, 
geometrically different measurements  of  F~, may be 
made for a single zone. We could label these observa- 
tions: 

Ao~,, 
• . t  2 F0h,, 

where the i '  refers to the i'th observation of  FI z, in the 
i th  zone. 

R= Z Wh,ji,j,(ln F~,u,-ln F~,jj,} z 
h,i, Zi ' , j '  

and our simultaneous equations are 

OR 
. . . . .  0 as before. 

Out, 

The arguments used are still true if  we only have 
one data zone and 

R =  ~ W~,,~,{ln (F~,, ,)-ln (F~v)} z 
h,i',j '  

where i '  and j '  refer to geometrically different meas- 
urements in one zone. The one scale constant kl is set 
to unity. 
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X-ray Compton-Raman scattering is reviewed from an original point of view. The differential cross 
section for X-ray inelastic scattering from crystals is derived from first principles to explain the coexisting 
Compton and Raman scattering in solids. This derivation makes it possible to express the cross section 
in terms of the current correlation of electrons in a crystal. All the electrons, including the core electrons, 
axe treated on an equal basis in this formulation. The relationship between the X-ray absorption 
spectrum and the inelastic scattering spectrum is discussed in detail. This formulation provides a theo- 
retical justification to the importance of X-ray inelastic scattering experiments in connection with an 
experimental determination of the two-particle Green's function. In the Appendices the theoretical 
formulations are given in detail, which apply not only to the ordinary inelastic scattering process, but 
also to the processes involving Bragg diffraction. 

1. Introduction 

Recently, interest in X-ray inelastic scattering from 
crystals has been renewed for several reasons. F rom a 

theoretical point  of  view, this scattering process may  
be used to check the validity of  the one electron model  
in solids, and to study the many body effects, i f  any, 
among the electrons. F rom an experimental  point  of  
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view, inelastic scattering experiments may give an ex- 
citing chance, if possible, to obtain the momentum 
distribution of valence electrons in a crystal. 

The energy spectrum of the X-ray inelastic scattering 
can reveal its typical shape when sample-crystals con- 
sist of atoms of very low atomic number. As Suzuki's 
experiments on lithium and beryllium (Suzuki, 1967; 
Suzuki, Kishimoto, Kaji & Suzuki, 1970) have shown 
clearly this typical shape, several of his results are 
reproduced here. There are three distinct features in 
the spectra, as shown in Fig. 1 : they are currently called 
the Rayleigh scattering denoted by 20, the Compton 
scattering denoted by its peak position 2o and the X- 
ray Raman scattering denoted by 2R. The Rayleigh 
scattering is the elastic scattering of X-rays. The Comp- 
ton scattering depends strongly on scattering angle, 
while the X-ray Raman scattering is almost independent 
of angle. In crystals of atoms which do not have very 
low atomic numbers, the spectrum does not show the 
distinct feature of X-ray Raman scattering. The phe- 
nomenon that one can observe in these cases is a super- 
position of the Compton and the X-ray Raman scat- 
tering. Therefore, it should preferably be called X-ray 
Compton-Raman scattering 

When a distinct Raman scattering is observed, its 
spectrum is closely connected to the absorption spec- 
trum, as seen in Fig. 2. In principle, the underlying 
mechanism of Compton-Raman scattering is the in- 
elastic scattering of photons, especially X-rays, by the 
electrons in solids. 

In order to understand this phenomenon, it is best 
to start with the classical description of the Compton 
scattering. The Compton scattering is well known: the 
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Fig. 2. The relationship between the X-ray Raman spectrum 
and the X-ray absorption spectrum (Suzuki et al., 1970). 
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Fig. 1. X-ray inelastic scattering spectra from beryllium crystals 
(Suzuki et al., 1970). The Rayleigh (elastic) scattering is 
denoted by 20. The peak position of the Compton scattering 
is indicated by 2c, which depends strongly on scattering 
angles 0. The X-ray Raman scattering is denoted by 2R. 

energy loss of a photon in a collision with a free elec- 
tron. First, this collision will be described classically. 
Next the collision between a photon and a bound elec- 
tron will be discussed in a classical model. Then, to 
make these arguments realistic to some extent, a prim- 
itive statistical treatment will be used with the elec- 
trons in solids as the scatterers. In this process, one 
will notice a great difficulty in proceeding via the clas- 
sical-statistical model, except for the Compton effect of 
free electrons. 

In these classical approaches, the cross section of 
the scatterers, namely electrons, will not be discussed 
at all. However, to discuss the intensity distribution 
of the scattered X-rays as a function of energy, one 
needs, of course, the scattering cross section. Because 
of the difficulty in pursuing the classical approach with 
its inadequacy in describing the cross section in a real- 
istic manner, quantum theory has to be introduced to 
describe X-ray Compton-Raman scattering. The or- 
dinary quantum mechanical treatment (the first-order 
Born approximation) will then be commented on 
briefly. In this paper we will formulate a general ex- 
pression for the X-ray inelastic scattering from a crys- 
tal, using a modern technique where all electrons, in- 
cluding the core electrons, are treated on an equal basis. 
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The detailed mathematical derivations will be des- 
cribed in the Appendices. 

2. A classical model (kinematics) 

We consider a free photon having the momentum 
hkin and the energy hogi, colliding with a free electron, 
whose momentum is given by Pin. The diagram for this 
collision is given by Fig. 3. At the time of collision 
(t=t~), we have momentum conservation and energy 
conservation: 

hk~. +pi.  =hkout +Pout, (2-1) 
and 

ho i. + - hO ou  + (2-2)  
2m 2m ' 

where the subscript 'out' stands for the particles after 
collision. As shown in Fig. 3, we introduce the scat- 
tering angle 0 for the photon, and the angle ~ for the 
incoming electron. Using these experimental variables, 
and also assuming that the energy loss of the photon 
is negligibly small, compared with the original energy, 
we obtain 

Z l , ~ r r e e : , ~ , o u t _ _ ~ i n  - 2h sin2 0 2 (  0)  mc -2 + c 2i, sin 

x (~-~--) cos ~V. (2-3) 

The first term is called the Compton shift, which is 
independent of the initial velocity of the electron and 
only depends upon the scattering angle. The second 
term is the Doppler shift depending upon the velocity 
of the electron. The first term is usually denoted by 
AAc: 

A2c=0.024(1-cos 0 ) / ~ .  (2-4) 

Since we have treated this problem classically, we 
definitely have a photon and an electron coming out 
in the directions given by the conservation rules. Sup- 
pose that one can have an energy-analyzing detector 
which receives only photons of a specific wavelength, 
and can set it in the direction given by equation (2-1). 
Then the detector, when tuned to the wavelength given 
by equation (2-3), picks up one photon with 100 % of 
probability. Otherwise, it can receive no photons; zero- 
probability case. This occurs without any uncer- 
tainty. 

Next we consider the photon colliding with a bound 
electron from a classical point of view. Again at the 
time of collision ( t=  t~), we have the momentum and 
energy conservation 

hki~ + p~,(t~)= hkout +Pout(free), (2-5) 
and 

hcoi~ + [Pi~(tc)]Z =he)out+ 
2m 

[P°ut(free)]2 + E(tc) 
2m 

(2-6) 

where the momentum of the bound electron is specified 
at t=  to, and the binding energy, E(tc), is also at this 
time. Unlike in the former Compton case, we do not 
know the specific values ofpi,(tc) and E(tc); they have 
to be obtained from the equation of motion for the 
bound electron. However, we assume they have been 
found in some manner. 

Then, we will have the following result: 

A/~bound : '~out- '~in = A~-free + ~ E(tc). (2-7) 

Here we have an additional shift due to the binding 
energy. If this binding energy corresponds to one of 
the atomic levels, the energy loss of the photon is 
greater in this case than in the free electron case. This 
shift is the classical origin of the X-ray Raman effect. 
By probability theory, this event is also unambiguous, 
provided that pi,(t¢) is somehow known. 

3. Classical statistical model 

So far we have treated the case in which the motion of 
the electron is well established. However, this is not 
realistic. When one deals with the electrons in solid, 
the motions of individual electrons are not known a 
priori. Since the Compton shift 2c does not depend upon 
the velocity of the electron, this shift is well defined 
regardless of the state of the electrons. However, the 
Doppler shift creates indeterminancy concerning the 
value of IPi,l cos ~, even if one could treat an ensemble 
of electrons in a crystal as a free electron gas. More 
serious is the shift due to the binding energy: in this 
case, the indeterminancy is more complicated because 
of the dependence of E(tc) on Pin(tc). These uncer- 
tainties lead to the broadening of the Compton intensity 

~ ~ i n  -- kout --- Pout 

kin ~ ~ ~  ---_ 

Pin ~ X 

Fig. 3. Diagram of momentum conservation in a collision of a 
free photon with a free electron, k and kout are the photon 
momenta before and after the collision, respectively. The 
angle 0 is the scattering angle of the photon, pin and pout are 
the free electron momenta before and after the collision, 
respectively. The angle ~, is introduced to give the initial 
direction of the moving electron. 
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distribution as a function of the energy or wavelength 
of the scattered photon: 

~Gou0~ =),in + A2c + c ),in sin m 

x ~<[Pin cos gtl~ + -hc ~(E(tc)~>, (3-1) 

where ~Q>~ indicates that the quantity Q has a distri- 
bution. In this case our detector, though tuned to an 
arbitrary wavelength and set in an arbitrary direction, 
can receive photons. The number of photons received 
depends entirely on the distribution of the initial elec- 
tron momenta, that is, the probability of finding the 
initial electrons which satisfy the given energy-mo- 
mentum conservation. In the scattering process, how- 
ever, a definite energy-momentum conservation rule 
exists between a photon and an electron. 

Let us assume that the density of the electrons in 
momentum space, that is to say, the momentum dis- 
tribution, has spherical symmetry and depends only 
on the magnitude of the momentum. For a bound 
electron, this assumption implies that the binding force 
is a central force. Then after some consideration (Ap- 
pendix I), we will obtain the spectral distribution of 
the scattered photons to be: 

i 
oo I (p)  

J ( ) , o u t )  ~ dp.  (3-2) 
P(Zout) ~),out 

a(cos ~) 

where I (p)  is the momentum distribution. 
In the case of conventional Compton scattering 

where the electrons are considered to be free, this 
equation reduces to the classical relationship for the 
Compton spectrum by DuMond (1929), since 

02out _ 2 (2~nsinO) p .  (3-3) 
a (cos 7 t) me 

The DuMond expression is 
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Fig. 4. A spectrum shape of the idealized Compton scattering. 
The parabolic shape (including dotted curve) is obtained 
for a non-interacting electron gas when the Pauli exclusion 
principle is not taken into account. The line shape has a 
cut-off terminating at ;to when the Pauli exclusion principle 
is considered. 

1 f oo I(p) 
J(2ou0 oc (1 +cos zO) sin (0/2) op(aou0 P dp, 

(3-4) 

where I (p)  is the momentum distribution of an elec- 
tron gas, and the polarization factor is taken into ac- 
count explicitly. Instead of this simple case of free 
electrons, we have an intractable expression for bound 
electrons in solids due to the complexity of equation 
(3-1). The scattering angle dependence, for example, 
is no longer the straight forward equation (3-4). It 
is hopeless to pursue this track. 

The effect from the initial states of the electrons in a 
crystal has been accommodated in this classical ar- 
gument by an introduction of momentum distributions. 
However, we have not so far considered these electrons 
as quantum particles. One of the most important quan- 
tum conditions for electrons in a crystal is the Pauli 
exclusion principle. Using an electron gas model, equa- 
tion (3-2) produces the parabolic profile centered on 
the value, 2c, (see Fig. 4) if the Pauli exclusion principle 
is not applied. However, this principle demands that 
the recoil electron should be above the Fermi level. 
This causes the distortion on lower energy transfer 
side of the spectrum (see Fig. 4). For the bound-elec- 
tron case, this means that no intensity appears until the 
energy loss becomes equal to the binding energy, and 
the spectrum may spread towards the higher energy 
transfer side (see Fig. 5). The conditions for final states 
of the scattered electrons cannot be so easily accom- 
modated into the classical arguments as was the case 
for initial states. 

In the ordinary classical development for X-ray Ra- 
man scattering, one abandons the momentum conser- 
vation rule by saying that overall momentum is con- 
served including nuclei. This assumption may be a 
practical way out, because the restriction on possible 
final states is more severe for Raman scattering than 
for Compton scattering, and equation (3-2) becomes 
useless anyway. Then one might say that a photon in 
X-ray Raman scattering experiences an energy loss of 
just the same amount as in the optical Raman scat- 
tering, since only the energy conservation rule should 
be taken into account. Strictly speaking, this argument 
is, of course, a gross approximation. It is, nevertheless, 
true that one must take into account not only the dis- 
tribution of the initial states, but the restriction on 
possible final states in order to predict a reasonable 
spectrum for the X-ray inelastic scattering. 

The question then arises whether, in spite of dis- 
carding the above-mentioned ad hoe arguments for the 
final state, we can still obtain a spectrum in a way 
similar to the one which we have used in dealing with 
the initial states. It should be remembered that the 
conditions for the initial states modified the energy- 
momentum rule from a rigid one, equation (2-3) or 
(2-7), to a more loose one with indeterminancy for the 
electron states, equation (3-1). In obtaining the scat- 
tered intensity, as the previous discussions of probabi- 

A C 27A - 9 
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lity have shown, we have assessed the probability with 
which a given momentum-energy conservation rule 
holds. However, we may take another approach; using 
a generalized mathematical function, we may write the 
rigid conservation rule, such as equation (2-7), as 

6(hkl -t- Pl - hk2 - P2) 
6[hco,+E~fpl)-hco2-E2~2)] (3-5) 

since in this case this event occurs with 100% as- 
surance if equations (2-1) and (2-3) hold, otherwise 
there is no chance of occurrence. Here the subscripts 1 
and 2 stand for 'in' and 'out '  states. We consider the 
function (3-5) as the  possibility of occurrence of the 
event (kx, pl)---~ (k2, P2), although the correct power of 
the delta function (6 ~, 62 or higher) has not yet been 
determined. Just by logical deduction we may obtain 
a certain function J(kxpl -+ k2P2) to describe the loose 
conservation rule, equations (3-1). 

The momentum 6 function, for instance, can be ex- 
pressed by 

I d3r exp {--ipzr} • 6(hki q- p l -  h k 2 -  p2) = 

x exp ( + ipir) • exp ( ih(kl-k2)r} 

= I d3r ~Pz(r)~+ (r) exp {ih(k~-k2)r} 

= (P2lexp {ih(kx - kz)r}lPl), (3-6) 

where gtp(r)=exp {ip. r}. This is the matrix element 
of exp {ih(kx-k2)r} between the two momentum states 
px and P2. If the electron wave function is given by a 
plane wave, equation (3-6) holds strictly. If the elec- 
trons are bound to an atom, for instance, a hydrogen 
atom, the matrix element represents the conservation 
of angular momentum; it is the selection rule of spec- 
troscopy, although we cannot write down the left-hand 
side as it was written in equation (3-6). It is therefore rea- 
sonable to assume that the matrix element (3-6), is, 
indeed, the true momentum conservation with the 
real possibility of the occurrence of the event, regard- 
less of the form of the electron wave functions. Our 
desired function J(kxpx--> k2P2) must be given by the 
matrix elements (3-6) or better by its modulus squared 
since probability should be a real quantity" 

J(kiPi "--> k2pz) oc I I d4x ~*2(x)~pi(x) 

x f~2(x)fkl(x)l 2. (3-7) 

Here we have included energy conservation, and fk(x) 
is the photon wave packet which equals exp [ik. x] 
in case of plane waves. 

We have thus obtained a reasonable expression for 
the spectrum in which both requirements for the initial 
and the final states are treated in the same way by ex- 
tending the concept of momentum-energy conservation 
and using probability theory. 

The derivation of equation (3-7) has been based en- 
tirely on a 'physical' argument. Our next task is to de- 
rive equation (3-7) or a more rigorous form, from a set 

of basic equations. Since equation (3-7) has a form 
commonly found in quantum mechanics, we will pro- 
ceed via a quantum mechanical formulation of the X- 
ray inelastic scattering problem. 

4. Quantum mechanical formulation 

Let us first write down the Hamiltonian for a system in 
which the photon interacts with many electrons in a 
crystal: 

+ V(r ) -g~  ] 

I e' S e d3r~+A • p ~ +  ~ d3 r~+~A 2, (4-1) 
m c  

where we used V .  A = 0  (the radiation or Coulomb 
gauge). The first term is the photon field Hamiltonian; 
the second, the many-electron part;  ge is the Fermi 
energy; and the third and fourth terms comprise the 
interaction Hamiltonian. Generally we can prove that 
the contribution from the third (A.  Pg0 is negligibly 
small for the interaction between ordinary X-rays and 
electrons. So we will drop it.* The term ~P÷~A 2, which 
is usually called the A 2 term, is essential not only in the 
Compton-Raman scattering, but also in X-ray diffrac- 
tion. 

Ordinarily, to calculate the intensity distribution 
of scattered photons, it is common to use Fermi's 
'golden rule', which is the first order Born approxi- 
mation using the ~u+ ~A 2 term as an interaction Hamil- 

* In the final result, the A. p~, term yields a more compli- 
cated polarization factor than the A2~+g term; the latter gives 
the Malus law. To check the effect due to the A. p~t term ex- 
perimentally, it is best to measure the polarizations of scattered 
photons in comparison with the Malus law, since the intensity 
change due to that term may be insensitive. 

Fig. 5. A possible spectral profile for the idealized Raman 
scattering. The spectrum starts at the energy loss ;tR which 
is the same value expected from the optical Raman effect, 
and forms a band towards the large energy loss side. 
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tonian. After the intensity distribution is obtained, an 
additional assumption, which is called an 'impulse' ap- 
proximation, is often introduced to calculate the rel- 
evant matrix elements. The 'impulse' approximation is 
essentially the quantum counterpart of the classical 
free electron Compton scattering. The other approx- 
imation, which is called an 'adiabatic' approximation, 
is sometimes introduced to calculate the matrix element 
in the case of bound electrons. This approximation, as 
it is currently formulated, replaces the crystal by an 
ensemble of independent isolated atoms, making it al- 
most impossible to study real solid state effects. 

Recently, Kuriyama & Alexandropoulos (1971) for- 
mulated a more general expression for the intensity 
distribution without using the Born approximation. 
They have used a quantum field theoretic technique 
to derive the spectral distribution in the Heisenberg 
representation. 

Let us define a physical vacuum, 10, 0; 0 ) - [ 0 ) ,  as 
the state of no photons and all the crystal electrons 
below the Fermi levels. With this definition, we replace 
the system of the crystal electrons by an electron-hole 
picture. When a photon is incident on a crystal in its 
ground state, we characterize this state as that of one 
photon k and no electrons and no holes in the crystal, 
and we denote it by 

10, 0; k; in ) .  (4-2) 

After the incoming photon is scattered inelastically 
by the crystal, we have a final state in which the out- 
going photon has undergone energy loss and momen- 
tum transfer and has created one hole and one electron 
in the crystal. Such a final state is characterized by 

E; k'; out) (4-3) 

where E indicates the hole energy below the Fermi 
level. The 'in' and 'out' states are Heisenberg states. 

The scattering amplitude associated with the transi- 
tion from state (4-2) to state (4-3) is given by 

S(E, L k ,  k')==-(E,E;k'; out 10, 0; k; in ) .  (4-4) 

This quantity can be calculated by the LSZ reduction 
formula (Appendix II): 

i e 2 1 
S(E,E,k,k')= (2r0 2 m 1/k~ 7[e(k'v)" 

~ ( k y ) ]  

x I d4x exp { - i (k ' -k )x}  u+(x) v~(x), (4-5) 

where we use the four-vector x, k, etc., and h=c= 1, 
and ug(x) forms a positive energy complete set and 
v~(x) forms a negative energy complete set. ue and 
v~ satisfy the SchrSdinger equation. The transition 
probability is given by [S(E,E,k,k')I z, and gives the 
spectrum predicted by equation (3-7). We use here the 
total transition probability instead of the customary 
transition probability per unit time (i.e. rate). In the 
present discussion the choice of either one of them does 
not make any difference in the results; however, the 

former quantity was chosen because it provides a more 
compact theoretical formulation. The total probability 
of a photon state k making a transition to state k' (for 
inelastic scattering) or to state 0 (for absorption) cor- 
responds to a differential cross section, not a total cross 
section. 

Since the incoming photon can create an electron 
and a hole in any possible combination of their states 
E and E, the probability of the incoming photon k 
making a transition to the state k' should be given by 
the sum of such all possible crystal states: 

( + )  ( - )  

w~ne'(k ~ k')= ~ ~ IS(E,E,k,k')I 2. (4-6) 
e 2 

Using equation (4-5), we can write equation (4-6) as 
1 [ e 2 ]  z 1 

W "o'(k - +  k')= km] g U  

x I I d4x, d4x2 exp { - i (k -k ' ) (x l -x2)}  
d , /  

x ~ ~ v~(xl)uE(xl)u+(x2) v~(x2), (4-7) 
2 

where the two sums are performed over all the positive 
E (unoccupied states) and over all the negative/7 (oc- 
cupied states), respectively. Using the electron field 
operator, T(x), the sum can be performed and is given 
by the Fermi vacuum expectation value (Appendix 
III): 

v (xOuE(xl)ut(xe)v (x,) 
e 

= + (xl)  '(x0 + 

(4-8) 
Since T+(x)~(x) is the electron density operator Q(x), 
equation (4-8) reduces to 

({e(xO-(o(xO)} {o(x2)- (e(x2))}) 
(4-9) 

Finally we obtain 

wln¢'(k ----> k')=C(k,k') {e(kv). e(k'v)} 2 

x I I dgxd4y exp { - i ( k - k ' ) ( x - y ) }  

x (dO(x)do(y)), (4-10) 
where 

1 1 (411  C(k,k')= ~ kk'" 

Equation (4-10) implies that winel(k-+ k') is given by 
the double four-dimensional Fourier transform of the 

• electron charge correlation (AQ(x)AQ(y)). Equation 
(4-10) is a general expression for the differential cross 
section in X-ray Compton-Raman scattering. 

In a similar manner, the differential cross section for 
photon absorption by a crystal is obtained as follows: 

A C 27A - 9" 
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W~b~(k .-+ 0)=  ~ ~ I(E, E; 0; out 10, 0; k; in)l 2 

=B(k)  I I d4xd4y exp { - i k ( x - y ) }  

x ( A j , ( x ) A j , ( y ) ) ,  (4-12) 

where 
1 1 

B(k)=  t z )v"rc" z ~ ,  (4-13) 

and j , (x)  is the component of the electron current 
operator along the photon polarization direction* 

e 
j (x )  = - i T ~  [7,  + ( x ) v  7 , (x )  - ( v  7,  + ( x ) ) 7 , ( x ) ] ,  

(4-14) 

and A j = j - ( ] ) .  Therefore, W abs is given by the Fourier 
transform of the electron current correlation. 

A continuity equation connects current and charge; 
in terms of current and charge correlations this is 

8 O 
V ~ V  ," (A j (x )Aj (y ) )  =e2 - -  - -  ( A o ( x ) A o ( y ) )  . 

3t .  3ty 
(4-15) 

Denoting the Fourier transform of the (Aj.  Aj) by 
J(kl ,  k2), equation (4-12) immediately reduces to 

W abs oc Ikl-'~J(k,k)e, (4-16) 
while, with the use of (4-15), equation (4-10) becomes 

Wine'(k --+ k')  oc sJ(K,x)s (4-17) 
( D '  ~ CO 

where s is the unit vector defined by ( k - k ' ) / l k - k ' l  
and x is the four vector ( Ik-k ' [ s ,  co'-co). Equation 
(4-17) is quite general and holds for co-existing Comp- 
ton and Raman scattering. 

It appears that we have obtained a relationship be- 
tween the absorption cross section and the inelastic 
cross section, since both equations (4-16) and (4-17) 
contain the common tensor J.  However, because of the 
difference in the variables k = ( k ,  - c o = - I k l )  in equ- 
ation (4-16) and x = ( k - k ' ,  co'-co) in equation (4-17), 
the connection is not straightforward for the following 
reasons. (1) A set of matrix elements given by eJ(k, k)e 
is independent of the set given by sJ(x,x)s .  Hereafter 
we abbreviate J(k, k) as J(k). (2) Since e is perpendicular 
to k, and s is parallel to K, absorption experiments can 
only determine the matrix elements such as Jx~(0, 0, k, ;co) 
and Jyy(O,O,k=;co), while an inelastic scattering exper- 
iment gives J=(0, 0,k~; co). Therefore neither of the ex- 
periments alone can determine the whole set of the 
matrix elements J(k), unless the system being studied 
is isotropic or of a high degree of symmetry. This 
situation merely reflects the fact that the absorption 

* Equation (4-14) is only part of current defined later in 
Appendix II. 

cross section is a functional of the transverse dielectric 
function of the electron system, while the inelastic 
scattering cross section is a functional of the longitu- 
dinal dielectric function. (3) In the inelastic scattering 
one needs to know J(K, co'-co) where IKl=lk-k'l ¢co 
-co' ,  while the J(k, co) for absorption are obtained for 
co-lkl .  One can, however, connect W ~"e' with W abs 
only when the Fourier transform of the electron current 
correlation, J(k) or JOe), is, or is nearly, independent 
of the momentum (or its transfer) k or K. 

This condition has a significant physical meaning: 
when the electrons in a crystal are well localized around 
atoms, that is [~1 • r~ < 1 where r~ is the effective radius 
of the ith electron, the Fourier transform of the current 
correlation becomes almost independent of K, the 
momentum transfer, as in the case of the X-ray anom- 
alous dispersion correction. When this condition is 
satisfied for an isotropic sample, the differential cross 
section for the inelastic scattering is given* by that for 
absorption: 

Winel(k --> k') oc (co_co,)-2 sin 2 (0/2) 

(e" e') z ½ Tr dQc, rc). (4-18) 

This agrees with experimental conditions for observing 
a distinct Raman scattering. If the above-mentioned 
condition is not satisfied, that is to say, if the J(x) 
depends strongly on K, the differential cross section 
for the inelastic scattering displays the characteristic 
Compton scattering usual for a large momentum trans- 
fer. 

In reality the electrons in a crystal are not in such 
an idealized condition; see, for instance, the energy 
spectrum of the X-ray inelastic scattering in a solid 
made up of elements of large atomic number. Our 
equation (4-17) still holds for the general case. 

5. Conclusion 

We have reduced the differential cross section for the 
X-ray inelastic scattering from a crystal to a form 
which is essentially governed by the property of the 
electron charge or current correlation. In this formu- 
lation all of the electrons in a crystal have been treated 
on an equal basis, regardless of whether they are core 
or valence electrons. The electron charge or current 
correlation is a very important quantity in almost all 
fields of solid state physics, since it contains all of the 
information on the interactions of many electrons inside 
a solid. The correlation is essentially a two-particle 
Green's function on which recent theoretical studies 
are centered. In general it is not easy to calculate the 
correlation or the two-particle Green's function for an 
interacting electron system. One of the most important 
conclusions in this paper is that, by means of X-ray 
inelastic scattering experiments, the Fourier transforms 

* This equation was first derived by Mizuno & Ohmura 
(1967) who used a dipole approximation in the first order 
Born approximation. 
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of the correlation or the two-particle Green's function 
can be obtained in spite of current difficulty in cal- 
culating it. X-ray inelastic scattering, therefore, provides 
a significant opportunity of studying, directly, a general 
quantity which characterizes the properties of electrons 
in solids. 

As we have mentioned in § 4, the current correlation 
forms a tensor, the elements of which are connected 
to the differential cross section of either inelastic scat- 
tering or absorption. In principle, two independent ex- 
periments, one for absorption and another for inelastic 
scattering, provide complementary information on the 
current correlation, that is, the two-particle Green's 
function. Such results may be compared with, and even 
complement, the frequency response data (conductivity 
and susceptibility) of solids, which are connected with 
the current correlation by the Kubo formula (Kubo, 
1959; Ziman, 1969). 

An immediate benefit from our expression for the 
cross section is found in the determination of the 
momentum distribution of valence electrons in solids 
containing elements of high atomic number. As we have 
discussed, the current correlation arising from the core 
electrons can be obtained from the absorption spec- 
trum. Subtracting this absorption spectrum from the 
inelastic scattering spectrum, one can obtain a spec- 
trum essentially due to the valence electrons alone. 
From this new spectrum one can derive the momentum 
distribution, or the charge correlation for the valence 
electrons. 

Another important aspect is found in the tempera- 
ture dependence of the correlation. Of special interest 
may be the behaviour of the correlation near the 
transition or critical temperature associated with phase 
transitions of the second kind (such as magnetic and 
ferroelectric transitions). 

Since the current correlation contains many-body 
effects, collective excitations of electrons in solid, such 
as plasmons, can also be studied by the inelastic scat- 
tering experiments. 
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APPENDIX I 
Derivation of equation (3-2) 

The intensity of photons scattered inelastically between 
the wavelength region 2 and 2 + d 2  is denoted by J(2) 
d2. This quantity contains contributions from all initial 
electrons. Since the momentum distribution, I(p), is 
assumed to be dependent only on the magnitude of 

momenta, the intensity which is produced by the initial 
electrons having the magnitude of momenta between 
p and p+dp can be written [AJ(2)]pd2. For the fixed 
magnitude of momenta, the electrons which happen to 
have the same value of (p cos gt) contribute scattering 
between 2 and 2 + d2. Since the momentum distribution 
is assumed to be spherically symmetric, the number of 
the electrons which satisfy the above condition is given 
by 

I(p) d~  sin Ndg,=2~l(p) d(cos 9'). 
o 

Since, in this classical picture, each electron definitely 
scatters a photon, the intensity caused by these electrons 
is given by 

[AJ(2)l,d2= 2zcI(p) d(cos gt). 

Since 2 is given as a function of ~ by equation (3-1), we 
can write 

~2 [  (oos ]. d(cos 2.I(p) d( os 
] 

o r  

[Aj(2)]o = 2re " I(p) 

J(2) is obtained by summing [AJ(2)]p over all possible 
magnitudes of p which can produce photons of wave- 
length 2. Equation (3-2) obtains. 

APPENDIX H 
The scattering amplitude for X-ray inelastic scattering 

from a crystal 

(A) Equations for the photon and the electron Green's 
functions 

The Hamiltonian density for a system of electrons 
interacting with photons can be written 

-ff + { v  x A(x)} 2 

1 
+ 2m- [ { v  + leA(x)) 9' + (x) • {V - ieA(x)}~u(x)] 

+ V(x)g/+(x)gt(x)-gp~u+(x)~(x), (IIA-1) 

where A is the photon field operator; g and 9' + are the 
electron field operators; e and m are the charge and 
mass of the electrons, respectively; the variable x im- 
plies the four vector (r, t); and both Planck's constant 
h and the velocity of light are set equal to 1. In equation 
(IIA-1) the energy counter term, - g F g , + g ,  has been 
introduced to redetermine the total energy of the system 
with respect to the Fermi energy level of electrons in 
a crystal. The quantum conditions for field variables 
state the equal time commutation or anti-commutation 
rules: 
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= 4nid(r - r ')5 u (IIA-2a) 
OAj(r') ] 

A~(r), 0t J -  

[OA,(r) OAj(r)] 
[At(r), A~(r ' ) ]_= Ot ' Ot J_  = 0  (IIA-2b) 

[N(r), N+(r')]+ = d ( r -  r ') (IId-Ze) 

[N(r ) ,v ( r ' ) l+=[N+(r ) ,  N + ( r ' ) ] + = 0 ,  (IIA-2d) 

where [ ]_ and [ ]+ indicate the commuta tor  and the 
ant i -commutator ,  respectively. 

Since we deal with the electrons in a crystal, they 
interact not  only with ions at lattice points, but also 
among themselves. Thoughout  this paper we have been 
treating all electrons, including the core electrons, on 
an equal basis in order to discuss both Compton  scat- 
tering and Raman  scattering from a unified point  of 
view (see § 4). Therefore, the expression VN+N should 
be considered as a mere abbreviation of  the correct 
expression: 

V~,+ N = V~o,(X)N+(X)N(X) 

+½IdffN+(X)N+(x)v(x 'x)Y/(~)N(x) '  (IIA-3) 

where V~o, is the bare crystal potential due to the ions 
at the lattice points, and v(x,2) is the instantaneous 
bare Coulomb potential.  We use the radiat ion (or 
Coulomb) gauge where the photon field A is transverse 
(V • A = 0 ) .  

The Hamil tonian (see §4) is given by H ( t )=  
d3r~f(x). Using the quan tum equation of  motion for 

an operator,* we obtain 

i ON(x) 1 
Ot - 2m { V - i e A ( x ) } Z N ( x )  

+{v(x)-e~} N(x) 

where 

(IIA-4) 

[] A(x) = 4zcj(x), (IIA-5) 

02 
[] . . . .  V 2" 

cot 2 

The 'current  operator '  j(x) is defined by 

where1" 

j<O)(x) = - _ _  

and 

j(1)(x)= -- __ 

j ( x ) = j  ~°~ (x) + j " ~ ( x ) ,  (IIA-6) 

ie 
~m [N+(X)V N(x)-{V N+(x)}N(x)] 

(II,4-7) 

e 2 
N + (X)N(x)A(x) . (IIA-8) 

m 

* The equation of motion for a operator Q is given by 
OQ = [Q,HI. t ~  
i" Part of the current operator j<0) is the electron current 

which was used in § 4 without the superscript (0). 

To proceed, we define the electron Green's  function 
and the photon Green's function: 

G(xl, x z )=( - i ) (Ol~( tx ,  t2)T[N(Xl)N+(X2)]lO) (IIA-9) 

and 

D u(xl,  x2) = i(01T[A ,(x0A j (x2)] I 0 ) ,  (IIA-10) 

respectively, where 

e(q, t 2 ) = {  +1  for h > t 2  
- 1  for h > t 2 ,  

and 10) is the Heisenberg state vector describing the 
ground state of the system represented by the total  
Hamil tonian (IIA-1) which may be called the physical 
vacuum or simply the vacuum state. The vacuum state* 
is the one which does not contain any photons,  quasi- 
particles (electrons excited above the Fermi level) or 
quasi-antiparticles (holes left behind below the Fermi 
level). Hereafter we abbreviate (01QI0) by ( Q ) .  The 
symbol T [ . . . ]  implies the Dyson chronological (time- 
ordering) operat ion which orders the enclosed field 
operator  from right to left in the order of  increasing 
time coordinates . t  

The photon Green's function and the electron 
Green's function satisfy the following equations which 
follow from the field equations (IIA-4), (IIA-5) and the 
commutat ion  relations (IIA-2a, b) and (llA-2c): 

i OG(1,2) . . . . . .  ( -V~2~ G(1 ,2)+(T[V(1)N(1)N+(2) ] )  
cqta \ - -  2m ] 

e (T[A(1)V xV(1)N+(2)]) +~-~m 

* At finite temperatures, the system will be statistically dis- 
tributed over all of its excited levels. This means that the 
ground state average, (01-" 10), which is used to calculate the 
T=O propagator, must be replaced by an average over a grand 
canonical ensemble. 

]" For two time dependent operators A(h) and B(h), 

T[A(tl)B(t2)I = 
O(h - t2)A(h)B(t2) + O(t2 - h)B(t2)A(h) (IIA-11) 

e(h, t2) T[A(tl)B (t2)] = 
O(q - t2)A(h)B(t2)- O(t2- h)B(t2)A(h), (IIA-12) 

where 
0 ( t ) = { + l  for t>0  

for t < 0 .  

Since [dO(t)/dt] = - [d0(-  t)/dt] = 6(0, we obtain 

0 Otl (e(&, tz)T[A(h)B(t2)]) = (e(h ,  t2) T [ OA(tl) [--~--~ B('2) ] ) 

+ 3(h -- t2)([A(h), B(t2)]+) 
(IL4-13) 

( 1) 0 (T[A(tl)B(t2)I)= T [ ~  B(t2) 

+ 6(tl-- tz)([A(h), B(t2)]-) (IIA-14) 
Applying equation (IIA-13) to equation (IIA-9), we will obtain 
the equation for the electron Green's function (IIA-15) in the 
text. To obtain the equation for the photon Green's function, 
we have to perform differentiation on (IIA-14) once more with 
respect to tl. 
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e 
+ ~-~ V,(T[A(1)V(1)V+(2)]) 

ie 2 
2m (T[A=(1)~'(1)~'+ (2)]) + 0 ( 1 -  2) ' 

( i i + 1 5 )  
and 

~D~j(1,2) 

=4rci(T[j~(1)Aj(2)])+4rcO,jd(1-2), (IIA-16) 

where the variable, say 1, is short for x, = (r,, h). These 
equations contain the vacuum expectation values of 
time ordered products of the field operators, such as 
(T[A(1)g/(1)V+(2)]) etc. 

At this stage it is convenient to introduce the varia- 
tional derivatives defined by Schwinger's action prin- 
ciple. Schwinger (1951 a, b) added an 'external c- 
number source' to the Hamiltonian density. The Hamil- 
tonian density due to the external source, a(x), is given 
by 

ogC's(X) = - J(x)A(x). (IIA-17) 

After the necessary equations are generated, the ex- 
ternal source function J will be set equal to zero at the 
end. With the ~ s  in the Hamiltonian, the action prin- 
ciple gives 

0(Q(1)) (T[Q(1)A,(2)])=(Q(1)) (A , (2 ) ) - i  04(2) ' 

(~IA-18) 

where Q(x) is an operator in the Heisenberg repre- 
sentation. From this relation we can immediately notice 
that the photon Green's function (IIA-10) could have 
been defined by 

O~j(12)= lim 0(Aj(1)) a--m Mj(2) ' (IIA-19) 

because, in the limit of a ~ 0, the vacuum expectation 
value of the photon field operator, (A), vanishes.* 

The expectation values of the time ordered products 
which have appeared in (IIA-15) and (IIA-16) can thus 
be reduced further by use of equation (IIA-18). It is 
customary to write the final expressions for the Green's 
function equations in a certain formal way, one which 

* In a classical sense, one may think of the expectation value 

of the radiation field intensity E(x) or 07 A(x) as an observ- 

able quantity. However, the expectation value (IE(x)l) or (OA(x)') 
at any possible state l) always vanishes in the case 

of photons which do not have an absolute coherence. There- 
fore, the Maxwell equations for the expectation values of ra- 
diation field E, which gives the fundamental equations for the 
dynamical theory of X-ray diffraction, do not exist. This im- 
plies, to be exact, that the radiation field inside the crystal 
cannot be described by the classical field vector E. Of course, 
this statement does not necessarily mean that there are no 
radiation wave fields inside the crystal, but that the classical 
wave-field concept is not sufficient to describe the behavior of 
photons inside the crystal. 

defines inverse Green's functions: 

I dTG-*(1T)G(I2)=O(1-2) (IIA-20) 

and 

I dgDTk*(1T)Dkj(g2)=4nO'fi(1-2). (IIA-21) 

The inverse Green's functions are obtained from equa- 
tions (IIA-15), (IIA-16) and (IIA-18) 

G-*(12)=K(12) - X, (12)-~b(12) (Iia-22) 

and 

where 

D~*(12) =0,j[2( 1)3(1-2) - H,i (12), (IIA-23) 

V2(1) ]0(1-2)-  ~e(12) (IIA-24) K(12)= [i 0-~[ + ~ j  

~a(12)-~-  [~-~--e m {V(1)(A(1)>+(A(1)>V(1)} 
eZ ] 

+-~m {(A(1))2} 0(1-2) (II~-25) 

and 

//,~(12)= lim4zc 0(j,(1)) (IIA-26) 
j ~  a (Aj (2 ) )  " 

82 
The symbols O(1) and V(1) imply ~ ?  -V2(1) and 

O 
Or~ ' respectively. ~b(12) contains higher order varia- 

tional derivatives. To obtain (IIA-26) we have made use 
of the chain rule. Equation (IIA-21) could have been 
obtained in a straightforward by use of the definition 
(IIA-19).* Equation (IIA-26) can be connected to the 
electron Green's function G(12) since the expectation 
value of the current (j~(x)) can be written [from (IIA-7), 
(IIA-8), (IIA-9) and (IIA-18)] 

(j,(1)) =lim [ e e2{ 
z-.l+ - ~ - ~ ( V , - V , ) , + i - ~  (at( i ) )  

* Using the definition (IIA-19) of the photon Green's func- 
tion which is equivalent to (IIA-10), we can easily derive the 
equation for the photon Green's function. First it should be 
remembered that in Schwinger's formulation there is an ad- 
ditional current J due to afs. Therefore the current j in the 
field equation (IIA-5) should be replaced by J+J .  Then let us 
take a derivative of the modified field equation with respect 
to Jj(2): 

aU,(1)) 3(A,(1)) 3(j,(1)) + 4rt (IIA-27) 
[] 6Jj(2-----~) - = 4 z c  ~Jj(2--------)-- 6Jj(2) 

The last term on the right hand side is equal to 4rM~j6(1-2). 
The chain rule states 

a(j,(1)) a (j,(1)) a(A~(i)) 
a(Ak(I)) 6Jj(2) 

In the limit J ~ 0, equation (IIA-27) reduces by use of the 
definition (IIA-19) to 

[]D~j(12) = ~ ~ dI//~e(1]')Dei(T2) +4zr&13(1-2). (IIA-29) 
t) 
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where 1 + = (rl, t, + e) with infinitesimally small positive 
quantity e. The quantity U~j is called the generalized 
polarizability.* The mass operator ~e(12) comes from 
the decoupling of the time ordered product (T[U(1) 
V(1)~+(2)]), because of both the electron-electron 
interactions and the lattice vibrations.t If these effects 
can be neglected, then ~e(12) reduces to Vio,(1)~(1-2) 
from equation (IIA-3).t 

It should be noted that the equation for the electron 
Green's function has been derived with the non- 
vanishing J, while that for the photon has been derived 
in the limit of d = 0. 

In the Green's function equations, (IIA-20) and 
(IIA-21), there are some terms, such as ~bG and H, 
which still contain the variational derivatives. It is 
customary to reduce these terms to more compact 
forms in terms of a vertex function. A vertex function 
which we need at the present time is the one for the 
radiation part. We denote it by F~(12;3), the definition 
of which is 

F~(12;3)=l im JG-~(12) (IIA-3 I) 
J-~0 a ( A , ( 3 ) )  ' 

where G -~ is given by equation (IIA-22). From equa- 
tion (IIA-20) and its adjoint form, we find:[: 

6G(12) ?t" 
- 

(IIA-32) 

The variational derivatives appearing in equations 
6G 

(IIA-20) and (IIA-21) have the form f i J "  By use of 

the chain rule and the definition of the photon Green's 
function (IIA-19) in the limit of J = 0 ,  we can write 

6G(12) l 6G(121 lim = ~ d]" - - "  D~t (]'3) 
J~0 6J,(3) - 6<A-~(T)> 

= ( -  1) _~ I dTd2d~G(1D&"(n;  3) 
k 

tJ 

x GC22)Dr,,(33). (IIA-33) 

Hereafter in this paper we will omit the summation 
and the integral signs in equations such as (IIA-33): 
the bar on the top of variables indicates integration 
over those variables, and the bar on subscripts indicates 
summation over those subscripts. 

* This quantity Hij is denoted by F,j in a previous paper 
(Ashkin & Kuriyama, 1966). 

t To decouple this term, we need other source terms in the 
Hamiltonian such as U~u+~, etc. 

:1: Equation (IIA-20) can be written in a symbolic (matrix) 
form as G-1G = L Performing a functional derivative operation, 
6A, on this, we obtain JAG -1 . G+G-16aG=O. Operating G 
from left, and applying the adjoint form of equation (IIA-20), 
G. G -1 =/, we find JaG= - G .  JaG -1 . G, which is the equa- 
tion (IIA-32). 

In the lowest order of approximation, in which ~b 
6~ 

and-~(-~-~ can be neglected, the vertex function, 

(IIA-31), is given by 

ie 
FR(12; 3)-- 2m [V,(1){6(1-3)3(1-2)} 

+ 3(1-3)V,(1)3(1-2)1, (IIA-34) 

by substituting (IIA-25) into (IIA-31). Another quantity 
that we need later is the functional derivative of the 
vertex function : 

3F~(12; 3) e z 
- 6~j6(1-2)6(1-3)6(1-4).  (IIA-35) 

O(Aj(4)) rn 

In the same order of approximation the equation for 
the electron Green's function is written finally in the 
limit of J =  0, 

G-I(1T)G(T2) = 6(12), (IIA-36) 
where 

G-2(12)= K(12), (IIA-37) 

because ~a(12) vanishes in the limit of J = 0 .  The pho- 
ton Green's function satisfies the equation (IIA-21), in 
which H(12) is approximated by dropping the last term 
6G. 
-~-j-m equation (IIA-30). 

(B)  The scattering amplitudes 

In § 4, the scattering probability amplitude is de- 
fined entirely in terms of Heisenberg 'in' and 'out' states. 
The scattering amplitude associated with a transition 
between two well-defined states is a matrix element of 
what Heisenberg (1942) called the S matrix. S matrix 
elements can be expressed entirely in terms of the 
vacuum expectation values of products of the field 
operators involved. These vacuum expectation values, 
in turn, can be expressed by simpler vacuum expec- 
tation values, such as the electron Green's function 
and the photon Green's function. The technique, which 
extracts information from Heisenberg states and dis- 
plays it in products of Heisenberg field operators sand- 
wiched between the vacuum states, is called the Leh- 
man, Symanzik & Zimmermann (1955, 1957) reduc- 
tion formula (Low, 1955). We will use this formula 
to calculate the scattering amplitudes in ~4 without 
being involved in the details.* 

If one can define, in a broad sense,~f single particle 
states for particles, anti-particles and photons, then the 
wave packets of those particles in their single particle 
states satisfy the following equations: 

* The details of the LSZ reduction formula can be found in 
references Barton (1963), Schweber (1962), and Bjorken & Drell 
(1965). 

t The energy eigenvalues of the interacting 'electron-hole' 
system can be complex numbers, since lifetimes of such one- 
particle states become finite (Hedin, 1965). For photons, such 
one-particle states exist, because photons are free before they 
interact with the 'electron-hole' system of a crystal. 
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~ V2--'F]UE(X)--Id.~e(X,.~)I, i fZm 
(IIB-1) 

i -~ + ~ -NF v~(x)- d2 ~:(x,.~)v~(~)=O, 

(ii -2) 

[] fk(x) = 0 (IIB-3) 

where ue, vr~ and f~ form a complete orthonormal set 
of one-particle wave packets. The set of ug's is construc- 
ted only from the positive energy wave functions of 
'electrons' which are excited above the Fermi level; 
the set of v~-'s is constructed only from the negative 
energy wave functions of 'holes' which are created 
below the Fermi level; and that offk is constructed only 
from the positive frequency photon wave functions. 

When we apply the LSZ reduction formula to the 
present problems, we must remember our situation that 
the 'electrons' and 'holes' are confined to a limited 
space, namely a crystal, while photons are not restric- 
ted to any finite space. This situation does not appear 
in the scattering problems of elementary particles, for 
which the LSZ reduction formula has been used. We, 
therefore, make a few modifications in the application 
of the reduction formula, so that the final expression 
of the S matrix elements holds for the scattering from 
a crystal of finite spatial size (Ashkin & Kuriyama, 
1966). 

The scattering amplitude for the X-ray inelastic scat- 
tering from a crystal is then given by 

S(E,E,k,k')=<E,E; k'; out [0,0; k; in) 

= ( - 1 ) i 4  ~ I~ d(123456)u+(i)vE(2) 

× (f:(J)},(fk(4))j 

x ((T[v/(5) 

× V+(6)A,(-J)Aj~)])}j=o, (IIB-4) 

where £2 indicates the integral ranges only inside the 
crystal; i andj  indicate spatial components of a vector; 
the symbol + implies adjoint operation and K(12) is 
given previously by equation (IIA-24). Making use of 
the variational derivative equation (IIA-18) repeatedly, 
we obtain 

lim (,T[v(1)~+(2)A,(3)Aj(4)]) 
J = 0  

= G(12)D,j (34) - iG(1 T) G(22) 

× Dm---(~'33)Dij(44)7"~(12; 34), 

where 

:~,j(12" 34)= - OFR(12; 3) +FR(1T; 3) 
' J(Aj(4)) 

G(ff)Fy(~2; 4) + FR(1 i ;  4)G(~F~(~2; 3). 

(IIB-5) 

(IIB-6) 

Here the convention for integrations and summations 
applies to the repeated variables and subscripts with 
a bar. The vertex function F R has been derived pre- 
viously. When equation (IIB-5) is substituted into 
(IIB-4), the contribution from the first term vanishes. 
The contribution from the second term can be sim- 
plified by the use of the electron Green's function 
equation (IIA-36): 

K(II)G(T2) = G(II)K + (i2)--6(1-2). 

Finally we obtain 

S(E,E,k,k')=i I d(123456) 
l , j , m , l  D 

x u+(T)v~(2){f~,~)}~{fk(4)}j 

D(3)Dm,(3"J) DC4)Dtj 6~)y,,,,C~ ; 56). 
(IIB-7) 

This scattering amplitude thus obtained holds for a 
general X-ray inelastic scattering in which a photon 
wave packet is coming into the crystal, and interacts 
with the electrons in the crystal, and may be Bragg- 
diffracted as well as scattered inelastically. When the 
incoming X-rays or the outgoing X-rays nearly satisfy 
Bragg conditions, the photon Green's function must 
be solved dynamically from the equation (IIA-21) as 
has been done in dynamical diffraction (elastic scat- 
tering) of X-rays by crystals (Ashkin & Kuriyama, 
1966; Kuriyama, 1967, 1968, 1970). 

Next we confine ourselves to the ordinary inelastic 
scattering problems in which no Bragg diffraction takes 
place and the refractive index correction is not signi- 
ficant.* In that case, the photon Green's function 
satisfies a simpler equation: 

[](1)D,j(12)=4n6,j6(1-2) . (IIB-8) 

A plane wave can be considered as an incoming wave 
packet without loss of generality, since any wave pac- 
kets can be expanded into a set of plane waves (Ashkin 
& Kuriyama, 1966). The incoming wave packet polar- 
ized linearly is then given by 

fk(x)= [(2n)a2k • 4nl-1/Ze(k) exp {ik. x} ,  (IIB-9 

where k is a four vector representing (k, -co) and e is 
the polarization direction. Then equation (IIB-7) re- 
duces to a simpler form: 

i 1 
S(E ,E ,k ,k ' ) -  (2~z)2 ]/k_k~ ~ e,(k')ej(k) 

× I d(l'i'~-4)u'~(-f)v~C2)~,,j('i2; 34"--) 

× exp {-ik'~a} exp {+ike4}. (IIB-10) 

* In the present formulation, the refractive index correction 
can be easily taken care of, because this is a matter of renormal- 
ization in a quantum field theoretic terminology, and our 
scattering amplitude is formulated for a crystal of finite size. 
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The function 7u has been given previously by equation 
(IIB-6), in which the dominant term can be found to 
be the first term by use of equation (IIA-34) and (IIA- 
35). This situation merely reflects the fact that, for 
ordinary X-rays, the interaction through the term 
p • A between photons and electrons plays a secondary 
role. It is a familiar one in X-ray diffraction, where the 
Kramers-Heisenberg dispersion term* also plays a 
minor r61e. The )'u can then be approximated by its 
leading term: 

e 2 
7u(12; 34)= + - -  ~u6(1-2)3(1-3)6(1-4) (IIB-11) 

m 

by use of equation (IIA-35). Substituting it into equa- 
tion (IIB-10), we obtain equation (4-5) in the text. 

In a similar fashion to the above problem, the scat- 
tering amplitude for absorption is given by 

S(E,.~k,O)=(LE; 0;I out 10,0; k; in) 

= i3 ~i  I r~ d(12-'~J~)u+(T)v~(2)[fk(3-)]' 

x K(] '4)K + (~ )  IZ]O) 

x {(T[v('4)V+(3)A,(~)I)}a=o . ([IB-12) 

The application of the variational derivative to the 
vacuum expectation value in (IIB-12) yields 

6G(12) 
lira (T[v(1)V+(2)A~(3)]} - 5J~(3) 
J=0 

=--G(l l - )FR(I2;  3-)G(22)D~(~3). (IIB13) 

Again using K(ll-)G(T2)=G(ll-)K+(]'2) =~(1-2), 
[] (1)Du(12) = 47rfiu~ (1-2) (neglecting Bragg diffraction) 
and equation (IId-34) for F, we obtain 

- , i 1 ie I 
S(E,E,k,O)- 2~ l/k 2m ,, d]{e(k).  [V(1) 

-V(I ' ) ]}  u+(1)vg(1 .) exp {ikx~} (IIB-14) 

where the variable 1' is set equal to 1 after the V- 
operation is performed, and we used the transversality 
condition V "fk=0. 

APPENDIX III 

Derivation of equation (4-8) 

When we calculated the transition probabilities for the 
inelastic scattering process and for the absorption pro- 
cess, we encountered the following quantities: 

~, Z v~(1)u~.(1)u+E(2)v~.(2)=--iS(12) (III-1) 
E 

and 

* Among X-ray diffractionists, this term is called the H6nl 
dispersion correction. 

Ju(12) = [V(1) - V(l')],[V(2) - V(2')]j 

x ~ ~ v~(l')uE(1)u+(2)vg(2'), (III-2) 
E 

where the variables 1' and 2' are set equal to 1 and 2, 
respectively, after V-operations are performed. The 
functions ue and vg are the 'electron' wave function and 
the 'hole' wave function for their one-particle states, 
as defined by equations (IIB-1) and (IIB-2). Essentially, 
these equations are the SchrSdinger equations for the 
'electrons' and the 'holes' in a crystal which is com- 
pletely free from any influence due to photons. In these 
SchrSdinger equations we have included the term due 
to electron--electron interaction in addition to the inter- 
action with the ions. Therefore, the solutions of these 
equations must be the exact solutions for the 'electrons' 
and the 'holes' in a real crystal, whether one can solve 
them in practice, or not. In other words, the quantities 
defined by equations (III-1) and (III-2) must follow 
from the properties of the crystal electrons only, and 
not from the photon field. From this point on, our 
problem thus reduces to one of the many body problems 
dealing with the electrons in a crystal. Although the 
same notation, V and V+, are used to represent the 
electron field operators in this section, they are no 
longer influenced by the photon field at all. 

In general, the electron field operators, V(x) and 
V+(x), can be expanded in terms of the complete sets, 
ue and v~: 

e ( x ) =  Z beuE(x)+ Z d~v~.(x) (III-3) 
E F: 

and 

Z Z 011-4) 
E 7~ 

where the summation range of E is limited only to 
positive energies, and that of J~, to negative energies. 
The quantities be and d~. are the anihilation operators 
for an 'electron' and a 'hole' respectively. The b + and 
d + are the creation operators for an 'electron' and a 
'hole', respectively. The following vacuum expectation 
values can be calculated with the aid of the creation 
annihilation operators (note the order of the field 
operators!)" 

(V+(1)V(2))= ~ v~(1)v~.(2) (III-5) 
g 

and 

(V+(1)V(2)g/+(3)g/(4)} 

= ~, ~, v~(1)ue(2)u~(3)v~(4) 

+ ~ ~ v~(1)v~(2)v~(3)vp(4). (III-6) 
E F 

Therefore we obtain 

iS(12) = (V+(1)V(1)V+ (2)V(2)}- (V+ (1)V(1)} 

× (~' + (2) V(2)) = (Q(1)Q(2))- (Q(1))(0(2)) (III-7) 
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and 

Ju(12) = (Vl-- V )i(V2- V~)s[(V+(I')v(1) 

x ~ + (2)V(2 ' ) ) -  (~,+ ( I ' )v(1))  

x (¢+(2)V(2'))]  

= ( - 1 )  (2m12 [(j~°)(1)j~°)(2)) 
\ i e /  

_ ( j  ~o)(1) ) (j5°)(2))1, (III-8) 

where we introduced the density operator 0(1)= 
V+(1)V(1) and the current operator j(0) defined by 
equation (IIA-7). From equation (III-7), it is obvious 
that iS(12) is related to the generalized dielectic func- 
tion (including the core electrons). 
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The One-Dimensional Anti-Phase Domain Structures. I. A Classification of Structure 
and the Patterson Method Applied to the Layer Sequence Determination 
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Department of  Physics, Faculty of  Science, Osaka City University, 459 Sugimoto-cho, Sumiyoshi-ku, Osaka, Japan 

(Received 5 February 1971 and in revised form 6 May 1971) 

The one-dimensional anti-phase domain structures with an out-of-step vector u = (a + b)/2 are classified 
into the following three kinds: (1) The complex out-of-step structure, (2) the complex APD (antiphase 
domain) structure, (3) the simple APD structure. These structures are characterized by the use of the 
similar symbols to the Zhdanov symbol. Intensity formulae are derived for some typical cases. The 
application of the Patterson method gives some useful relations between the symbol adopted and a 
quantity which is obtained by Fourier cosine transformation of the unitary intensities. Since this quan- 
tity is any one of a set of integers of the form (pz_ 4qP) (P: period, q • integer), the correct layer sequence 
may be obtained even if the observed intensities are not so accurate. Applications for some ideal and 
real cases are shown. 

1. The unitary intensity 

An example of the one-dimensional anti-phase domain 
structures of AaB-type with an out-of-step vector, 

( a+b)  
u -  2 ' (1) 

t Present address: Department of Physics, Osaka Kyoiku 
University, Tennoji, Osaka, Japan. 

is shown in Fig. 1, where the out-of-steps occur along 
the e direction at every four unit cells, and the structure 
consists of two kinds of unit cells as shown in Fig. 2. 
The structure factor of the unit cell shown in Fig. 2(a), 
which is denoted by Vo, is expressed as 

Vo=fa +fA[exp {zci(~ + r/)} + exp {zci(r/+ O} 
+exp  {zci(¢ + ~)}] 

where f .  and fB are the atomic scattering factors of A 
and B atoms, respectively, and ~, r /and  ( are the par- 


